next up previous
Next: Computer mediated reality Up: Third-generation: Wearabletetherless computer-mediated Previous: Third-generation: Wearabletetherless computer-mediated

The visually unobtrusive WearComp

My current wearable computer/personal imaging systems (See, for example, Fig 4) are characterized by their almost unobtrusive (visually undetected by a large number of people) nature.

Figure 4: Current state of the WearComp/WearCam invention comprises a complete multimedia computer, with cameras, microphones, and earphones, all built into an ordinary pair of sunglasses except for some of the electronics items sewn into the clothing. This system is typical of generation-3 of my WearComp project, and is suitable for wearing in just about any situation (other than bathing or during heavy rainfall). I've even fallen asleep with the unit on from time to time. With the system pictured here, for fully-mediated reality environments, I needed to close one eye, though I have built other similar two-eyed units. This rig is currently running the Linux 2.0 operating system, with XFree86 (variant of X-windows), and has a realtime bi-directional connection to the Internet.

The most recent WearComp prototype[16], equipped with head-mounted display, camera(s), and wireless communications, enables computer-assisted forms of interaction in ordinary day-to-day situations, such as while walking, shopping, or meeting people.

While the past generations have been very cumbersome and obtrusive, current functionality has ``disappeared'' from view and been subsumed into ordinary clothing and ordinary sunglasses.

In the early 1980s, I had already been experimenting with some unobtrusive radio communications systems based on conductive threads, as well as clothing-based computers, such as a speech-controlled LED lightpaintbrush (Fig 5(d)) which I also wore to high-school dances, and the like, as a fashion itemgif. Currently, I am trying to improve this approach to using clothing itself as a connectivity medium. I experimented with two approaches to making ``smart fabric'': additive and subtractive. In additive, I start with ordinary cloth and sew fine wires or conductive threads into the clothing. I implemented the subtractive form using conductive cloth, of which I have identified fourgif kinds which I call BC1, IC1, BC2, IC2 (conductive one direction, and conductive in both directions, either bare or insulated, respectively). See Fig 5(a). Some of these have been used in certain kinds of drapery for many years, the conductive members woven in for appearance and stiffness, rather than electrical functionality. Ordinary cloth I call C0 (conductors in zero directions). Smart clothing may have multiple layers, e.g. BC2 as RF shield, followed by one of the following possibilities:

the first two being equivalent, while the last requiring additional incisions to be made to disconnect unwanted extra connectivity in both dimensions where insulation is removed with solvent. Either of these three options allow components to be "wired" together into something that's unobtrusive even to the new see-through-clothing security camerasgif (I measured some BC2, and found it to provide approximately 60dB of protection over a wide range of frequencies). Connections to `smart clothing' are shown in Fig 5(b,c).


Figure 5: An early smart clothing effort as possible future generation of WearComp. (a) Four kinds of conductive fabric (see main text of article for description). (b) Back of LED shirt showing where one of the LEDs is soldered directly to type-BC1 fabric (the joint has been strengthened with a blob of glue). Note the absence of wires leading to or from the glue blob, since the fabric itself acts as conductor. Typically one layer of BC1 is put inside the shirt, while the other is outside the shirt. Alternatively, either an undergarment is used, or a spacer of type-C0 between the two layers. (c) Three LEDs on type-BC1 fabric, bottom two lit, top one off. (d) LED shirt driven by wearable computer. (C) 1985 by Steve Mann; thanks to Renatta Bererra for assistance.

The compact unobtrusive nature of the apparatus, and the corresponding ability for long-term wear, has led to a new genre of cinematography, and the possibility of personal documentary exhibited in real-time. Wearable Wireless Webcam (the author's Internet-connected personal imaging workstation transmitting to an online gallery) was one example of a long-term (two year) personal documentary of day-to-day experience, transmitted, for realtime consumption, to a remote audience[16].

next up previous
Next: Computer mediated reality Up: Third-generation: Wearabletetherless computer-mediated Previous: Third-generation: Wearabletetherless computer-mediated

Steve Mann
Tue Jan 6 23:24:56 EST 1998